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1 Issues with Euclidean Distance

Euclidean distance is by far the most popular measure for (dis)similarity of numerical data points. Yet,
one should be aware of some of the pitfalls in using it. Here we describe a few

1.1 In a high-dimensional noisy setting, Euclidean distance may represent
noise rather than signal

Let x, y ∈ Rd be data points, and suppose instead of measuring x, y we measure x̃ = x+ϵ, and ỹ = y+δ,
where ϵ, δ ∼ N (0, σ2I). Then

E ∥x̃− ỹ∥2 = E
[
(x̃− ỹ)T (x̃− ỹ)

]
= E

[
(x+ ϵ− y − δ)T (x+ ϵ− y − δ)

]
= xTx+ yT y − 2xT y + E

[
2(xT ϵ+ xT δ + yT ϵ+ yT δ) + ϵT ϵ+ δT δ

]
= ∥x− y∥2 + E

[
ϵT ϵ+ δT δ

]
= ∥x− y∥2 + 2dσ2.

From this, we can see that when d is large, measured Euclidean distance is affected by noise (σ2),
rather than signal (∥x−y∥2). It therefore turns out that Euclidean distance is a problematic measure of
(dis)similarity in high dimensions, with the exception of immediate neighbors. Diffusion maps, presented
in the next lecture is one way to overcome this difficulty.

1.2 Euclidean distance does not consider co(variance)

To answer questions like “are two points 1cm apart close?”, we have to consider the layout of the
other data points (or equivalently, the covariance structure of the data generating mechanism). See, for
example, figure 1. In a similar spirit, questions like “are two points 1cm apart significantly closer than
two points 2cm apart?”.

Mahalanobis distance, discussed next, adjusts Euclidean distance to take this covariance structure
into consideration.

2 Mahalanobis Distance

Proposition 2.1. Let x1, . . . , xn be datapoints in Rm, and let C be the m×m data covariance matrix
C = 1

n

∑n
i=1 (xi − x̄) (xi − x̄)

T
. Then C is semi positive-definite. If, in addition, n ≥ m and x1, . . . , xn

span Rm, then C is strictly positive-definite.
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Proof. Pick y ∈ Rm, and let zi = xi − x̄. Then yTCy = 1
n

∑n
i=1

(
zTi y

)T (
zTi y

)
≥ 0, so C is positive

semi-definite. Since x1, . . . , xn span Rm, so do z1, . . . zn. If y is nonzero, then yTCy = 0 implies
that zTi y = 0 for all i, which is a contradiction, as there is a linear combination y =

∑
i aizi, so

yT y =
∑

i aiy
T zi = 0.

Figure 1: Which of the points marked in x is closer to the cluster centroid? in what sense?

The main takeout from the above example is that distance should be data-driven, and take the
distribution of the data into account. Mahalanobis distance considers the covariance of the data, by
multiplying the Euclidean distance with the inverse covariance. Specifically, for two points xi, xj ∈ Rm,
the distance is defined as

dM (xi, xj) =
√
(xi − xj)TC−1(xi − xj).

Since C is typically positive definite (for n ≥ m), it can be inverted, so the distance is well-defined.
To understand the Mahalanobis distance, consider the eigendecomposition C = V ΛV T , and let W :=
Λ− 1

2V T be the PCA-whitening matrix. Then C−1 = WWT . So the Mahalanobis distance is

d2M (xi, xj) = (xi − xj)
TWTW (xi − xj) = ∥Wxi −Wxj∥2,

i.e., the Euclidean distance between the whitened points WTxi and WTxj . Thus Mahalanobis distance
is in fact the standard Euclidean distance on whitened data.

3 Local Mahalanobis

Real world data often lies on low dimensional manifold (e.g., a spiral). Many times, we are interested
in finding neighboring points (for example, in applications of kNN. In such cases, it is benefitial to take
into account local covariance matrices, rather than the global covariance matrix. For example, data
on a cross (isotropic covariance). This yields the local Mahalanobis distance, where for each point we
compute neighbors using its local metric, defined using the local covariance matrix. This can be used
to design an iterated kNN algorithm as follows. In each iterations we find the k nearest neighbors using
the current local metric (starting with the Euclidean metric at the first iteration). Then we compute
the local covariance, and use the local metric to find new neighbors, The process is repeated until
convergence (i.e., neighbors don’t change).
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4 Quadratic Discriminant Analysis

Suppose we have data samples from two classes, and the samples from each class as normally distributed
with known mean vectors µ0, µ1 and covariance matrices Σ0,Σ1. Given a test point x, we form the
likelihood ratio

likelihood ratio =
Pr(x|µ1,Σ1)

Pr(x|µ0,Σ0)
=

√
2π|Σ1| exp(− 1

2 (x− µ1)
TΣ−1

1 (x− µ1)√
2π|Σ0| exp(− 1

2 (x− µ0)TΣ
−1
0 (x− µ0)

.

According to Bayes Optimal decision rule, we predict the class of x to be 1 if the likelihood ratio is
greater than 1, and 0 otherwise. Taking the logarithm of the likelihood ratio, and ignoring terms not
depending on x we get a decision rule according to which we predict 1 iff

(x− µ1)
TΣ−1

1 (x− µ1)− (x− µ0)
TΣ−1

0 (x− µ0) > t,

where t is some threshold depending on Σ1,Σ0. It can thus be seen that QDA essentially compares the
Mahalanobis distances of x to the class means.
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Figure 2: Mahalanobis distance is Euclidean distance after whitening.; Top: principal directions. Center:
projection onto the principal directions. Bottom: PCA-whitening (identity covariance)
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